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Abstract

Within the framework of Mindlin�s dipolar gradient elasticity, general energy theorems are proved in this work. These
are the theorem of minimum potential energy, the theorem of minimum complementary potential energy, a variational
principle analogous to that of the Hellinger–Reissner principle in classical theory, two theorems analogous to those of Cas-
tigliano and Engesser in classical theory, a uniqueness theorem of the Kirchhoff–Neumann type, and a reciprocal theorem.
These results can be of importance to computational methods for analyzing practical problems. In addition, the J-integral
of fracture mechanics is derived within the same framework. The new form of the J-integral is identified with the energy
release rate at the tip of a growing crack and its path-independence is proved.

The theory of dipolar gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin,
R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78] and is appropriate to model mate-
rials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite
function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases
of the general theory considered here are the well-known theory of couple-stress elasticity and the recently popularized
theory of strain-gradient elasticity. The latter case is also treated in the present study.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The variational principles and the related energy theorems of the classical theory of elasticity are powerful
tools in deriving numerical solutions based on the finite element and the boundary element methods (see, e.g.,
Hughes, 1987; Beskos, 1987). The equations of generalized continuum theories like gradient elasticity are even
more complicated than those of classical elasticity. Therefore, the need for analogous energy principles and
theorems within the new theories is even more pronounced than in the classical theory. Here, we establish
all basic energy principles and theorems for the theory of dipolar gradient elasticity based on forms I and
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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II of the general Mindlin�s (1964) theory. Also, the J-integral of fracture mechanics is derived within the same
framework and is identified with the energy release rate at the tip of a growing crack.

The theory of dipolar gradient elasticity (or, simply, gradient elasticity) was introduced by Mindlin (1964)
in an effort to model the mechanical behavior of solids with microstructure. The basic concept of this general-
ized continuum theory lies in the consideration of a medium containing elements or particles (called
macro-media), which are in themselves deformable media. This behavior can easily be realized if such a
macro-particle is viewed as a collection of smaller sub-particles (called micro-media). In this way, each particle
of the continuum is endowed with an internal displacement field, which can be expanded as a power series in
internal coordinate variables. Within the above context, the lowest-order theory (dipolar or grade-two theory)
is the one obtained by retaining only the first (linear) term of the foregoing series. Also, because of the inherent
dependence of the strain energy on gradients of certain fields—like the displacement gradient (form I in Mind-
lin, 1964), the strain (form II) or the rotation (couple-stress case)—the new material constants imply the pres-
ence of characteristic lengths in the material behavior. These lengths can be related with the size of
microstructure. In this way, size effects can be incorporated in the stress analysis in a manner that classical
theories cannot afford. Continua for which such an analysis can be useful are periodic material structures like
those, e.g., of crystal lattices, crystallites of a polycrystal or grains of a granular material.

Historically, ideas underlying generalized continuum theories were advanced already in the 19th century by
Cauchy (1851), Voigt (1887), and the brothers Cosserat and Cosserat (1909), but the subject was generalized
and reached maturity only in the 1960s with the works of Toupin (1962), Mindlin (1964), and Green and
Rivlin (1964). In a brief literature review now, it should be noticed that the Mindlin theory and related ideas
(Bleustein, 1967; Mindlin and Eshel, 1968) enjoyed an early and successful application (see, e.g., Weitsman,
1966; Day and Weitsman, 1966; Bleustein, 1966; Herrmann and Achenbach, 1968; Dillon and Kratochvil,
1970; Oden et al., 1970; Germain, 1973; Tiersten and Bleustein, 1975). More recently, this approach and re-
lated extensions have also been employed to analyze various problems in, among other areas, wave propaga-
tion (Vardoulakis and Georgiadis, 1997; Georgiadis et al., 2000; Georgiadis and Velgaki, 2003; Georgiadis
et al., 2004), fracture (Zhang et al., 1998; Chen et al., 1998; Chen et al., 1999; Shi et al., 2000; Georgiadis,
2003; Radi and Gei, 2004; Grentzelou and Georgiadis, 2005), mechanics of defects (Lubarda and Markensk-
off, 2003), and plasticity (see, e.g., Fleck et al., 1994; Vardoulakis and Sulem, 1995; Wei and Hutchinson, 1997;
Begley and Hutchinson, 1998; Fleck and Hutchinson, 1998; Gao et al., 1999; Huang et al., 2000; Huang et al.,
2004). In particular, recent work by Gao et al. (1999) and Huang et al. (2000, 2004) introduced a mechanism-
based strain gradient theory of plasticity that is established from the Taylor dislocation model. In addition,
efficient numerical techniques (see, e.g., Shu et al., 1999; Amanatidou and Aravas, 2002; Engel et al., 2002;
Tsepoura et al., 2002; Giannakopoulos et al., submitted for publication; Tsamasphyros et al., 2005) have been
developed to deal with some problems analyzed with the Toupin–Mindlin approach. Based on the existing
results, it is concluded that the Toupin–Mindlin theory does extend the range of applicability of the �contin-
uum� concept in an effort to bridge the gap between classical continuum theories and atomic-lattice theories.
Finally, another interesting feature of this theory is the emergence, in some cases, of boundary layer effects that
can capture corresponding phenomena (see, e.g., Shi et al., 2000; Georgiadis, 2003; Georgiadis et al., 2004). Of
course, such boundary layer effects constitute a challenge for numerical methods.

Regarding now appropriate length scales for strain gradient theories, as noted by Zhang et al. (1998),
although strain gradient effects are associated with geometrically necessary dislocations in plasticity, they
may also be important for the elastic range in microstructured materials. Indeed, Chen et al. (1998) developed
a continuum model for cellular materials and found out that the continuum description of these materials
obey an elasticity micropolar theory (i.e. a theory with strain gradient effects). In the latter study, the intrinsic
material length was naturally identified with the cell size. Other examples of the size effect in elastically
deformed solids include propagation of waves with small wavelengths in layered media (Herrmann and
Achenbach, 1968), bending of a polycrystalline aluminum beam (Kakunai et al., 1985), and buckling of elastic
fibers in composites (Fleck and Shu, 1995). Generally, theories with strain gradient effects are intended to
model situations where the intrinsic material lengths are of the order of 0.1–10 lm (see, e.g., Shi et al.,
2000). Since the strengthening effects arising from strain gradients become important when these gradients
are large enough, these effects will be significant when the material is deformed in very small volumes, such
as in the immediate vicinity of crack tips, notches, small holes and inclusions, and micrometer indentations.
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Also, in wave propagation dealing with electronic-device applications, surface-wave frequencies on the order
of GHz are often used and therefore wavelengths on the micron order appear (see, e.g., White, 1970; Farnell,
1978). In such situations, dispersion phenomena at high frequencies can only be explained on the basis of strain
gradient theories (Georgiadis and Velgaki, 2003; Georgiadis et al., 2004). In addition, the latter studies also
provide estimates for a single microstructural parameter (i.e. an additional material parameter to the standard
Lame constants k and l) employed in some simple material models (like the couple-stress elasticity and the
gradient elasticity of form II in Mindlin�s theory), which lie within the context discussed here. Indeed, by con-
sidering that the material is composed wholly of unit cells having the form of cubes with edges of size 2h and
by comparing the forms of dispersion curves of Rayleigh waves obtained by the Toupin–Mindlin approaches
(in the case of either a couple-stress model or a �pure� gradient model with no couple-stresses) with the ones
obtained by the atomic-lattice analysis of Gazis et al. (1960), it can be estimated that the so-called couple-
stress modulus g is of the order of 0.1lh2 (Georgiadis and Velgaki, 2003), whereas the so-called gradient coef-
ficient c is of the order of (0.1h)2 (Georgiadis et al., 2004). Finally, we should mention the work by Chang et al.
(2003), who provide estimates for the microstructural constants in granular materials modeled as strain-gra-
dient continua.

In the present study, the most common version of Mindlin�s theory is employed, i.e. the so-called micro-
homogeneous case (see Section 10 in Mindlin, 1964). According to this, on the one hand, each material particle
has three degrees of freedom (the displacement components—just as in the classical theories) and the micro-
density does not differ from the macro-density, but, on the other hand, the Euler–Cauchy principle (see, e.g.,
Fung, 1965; Jaunzemis, 1967) assumes a form with non-vanishing couple-stress vector and the strain-energy
density depends not only upon the strain (as in standard elasticity) but also upon the second gradient of the
displacement. This case is different from the general Cosserat (or micropolar) theory that takes material par-
ticles with six independent degrees of freedom (three displacement components and three rotation compo-
nents, the latter involving rotation of a micro-medium w.r.t. its surrounding medium) and, as explained in
Section 2 below, includes as important special cases the strain-gradient elasticity (form II in Mindlin, 1964)
and the couple-stress elasticity (special case of form III in Mindlin, 1964).

Regarding now previous work on energy principles and theorems within the framework of gradient theo-
ries, we should mention that some particular results exist scattered in the following works that mainly deal
with numerical methods. More specifically, Smyshlyaev and Fleck (1995, 1996) presented minimum energy
principles applied to composites and polycrystals, Shu et al. (1999) presented a weak variational formulation
for Finite Element analysis, Amanatidou and Aravas (2002) presented the principle of virtual work in the case
of form III of Mindlin�s theory, Polyzos et al. (2003) presented a reciprocal theorem in the case of form II of
Mindlin�s theory and only for isotropic material response, and Giannakopoulos et al. (submitted for publica-
tion) presented a reciprocal theorem and a theorem of Castigliano�s type in the case of form II of Mindlin�s
theory. Giannakopoulos et al. (submitted for publication) kindly acknowledged earlier unpublished work by
the present authors on similar theorems. In the present paper, we aim at a systematic derivation of all basic
energy theorems for the most general case of Mindlin�s theory, namely for form I. Finally, after treating here
the general case of dipolar gradient theory (which involves the entire field of displacement gradient), we also
deal with the special case of strain-gradient theory (form II).

2. Fundamentals of dipolar gradient elasticity

The general case of dipolar gradient theory for a 3D continuum is best described, assuming small strains
and displacements, by the following form of the first law of thermodynamics with respect to a Cartesian rect-
angular coordinate system Ox1x2x3 (indicial notation and the summation convention will be used throughout)
q _E ¼ spq _epq þ mrpqorop _uq; ð1Þ

where q is the mass density of the continuum, E is the internal energy per unit mass, uq is the displacement
vector, epq = (1/2)(opuq + oqup) is the linear strain tensor, spq = sqp is the monopolar (or Cauchy in the nomen-
clature of Mindlin, 1964) stress tensor, mrpq = mprq is the dipolar (or double) stress tensor (a third-rank
tensor), op( ) � o( )/oxp, a superposed dot denotes time derivative, and the Latin indices span the range
(1,2,3). Clearly, the above form of the first law of thermodynamics can be viewed as a more accurate
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description of the material response than that provided by the standard theory (case of q _E ¼ spq _epqÞ, if one
thinks of a series expansion for q _E containing higher-order gradients of the displacement gradient (or even
of its symmetrical part, the strain). For instance, the additional terms may become significant in the vicinity
of stress-concentration points where the displacement gradient undergoes steep variations.

The dipolar stress tensor now follows from the notion of dipolar forces, which are anti-parallel forces acting
between the micro-media contained in the continuum with microstructure (see Fig. 1). As explained by Green
and Rivlin (1964) and Jaunzemis (1967), the notion of multipolar forces arises from a series expansion of the
mechanical power M containing higher-order velocity gradients, i.e. M ¼ F q _uq þ F pqðop _uqÞ þ F rpqðorop _uqÞ þ � � �,
where Fq are the usual (monopolar) forces of classical continuum mechanics and (Fpq,Frpq, . . .) are the multi-
polar (dipolar, quadrupolar, etc.) forces within the framework of generalized continuum mechanics.

In this way, the resultant force on an ensemble of sub-particles can be viewed as being decomposed into
external and internal forces, the latter ones being self-equilibrating. However, these self-equilibrating forces
produce non-vanishing stresses, the multipolar stresses. This means that an element along a section or at the
surface may transmit, besides the usual force vector, a couple vector as well (i.e. the Euler–Cauchy stress prin-
ciple is augmented to include additional couple-tractions). Regarding the notation of the dipolar forces and
stresses, the first index of the force indicates the orientation of the lever arm between the forces and the second
one the orientation of the pair of forces itself. The same holds true for the last two indices of the dipolar stres-
ses, whereas the first index denotes the orientation of the normal to the surface upon which the stress acts.
Also, the dipolar forces Fpq have dimensions of [force][length]; their diagonal terms are double forces without
moment and their off-diagonal terms are double forces with moment. In particular, the anti-symmetric part
F[pq] = (1/2) (xpFq � xqFp) gives rise to couple-stresses. Finally, across a section with its outward unit normal
in the positive direction, the force at the positive end of the lever arm is positive if it acts in the positive direc-
tion. �Positive� refers to the positive sense of the coordinate axis parallel to the lever arm or force.

Next, compatible with (1) is the following form of the strain-energy density W stored in the continuum:
Fi
W � W ðepq; jrpqÞ; ð2Þ

where jrpq = oropuq = oporuq is the second gradient of displacement. The rotation tensor xpq =
(1/2)(opuq � oqup) is also recorded for future reference. The kinematical field (epq,jrpq) is assumed to be com-
patible in the sense that the relations eljpemqrojorepq = 0 and eljrojjrpq = 0 (with eljp being the Levi–Civita alter-
nating symbol) are satisfied (cf. Mindlin, 1964). In what follows, we assume the existence of a positive definite

function W(epq,jrpq). Also, the form in (2) allows not only for a linear constitutive behavior of the material but
also for a non-linear one. Indeed, in the present work, except for the cases of uniqueness theorem and recipro-
cal theorem, all other energy theorems are valid for non-linear constitutive behavior as well. From the previ-
ous definitions of kinematical variables, the properties epq = eqp, jrpq = jprq and xpq = �xqp are obvious.
Simpler versions of the general theory (form I in Mindlin, 1964) can be derived by identifying jrpq with either
the strain gradient (strain-gradient theory: jrpq = orepq—form II in Mindlin, 1964) or the rotation gradient
(couple-stress theory: jrpq = orxpq—special case of form III in Mindlin, 1964). Nevertheless, we deal here with
rce)
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g. 1. A solid with microstructure: monopolar (external) and dipolar (internal) forces acting on an ensemble of sub-particles.
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the general case by taking the gradient of the entire displacement-gradient field. In the final Section of the pa-
per, the results for the special case of strain-gradient theory will also be presented.

Further, stresses can be defined in the standard variational manner
spq �
oW
oepq

; mrpq �
oW
ojrpq

. ð3a; bÞ
Also, for Eq. (3) to establish a one-to-one correspondence between spq and epq and between mrpq and jrpq (i.e.
in order for (3) to be invertible being able, therefore, to provide epq and jrpq in terms of spq and mrpq, respec-
tively), the following conditions should prevail in view of the implicit function theorem: (i) the derivatives
(o2W/oepqoelm), (o2W/ojrpqojjlm) and (o2W/oepqojjlm) be continuous in the neighborhood of the �point�
ðe�pq; j

�
rpqÞ, and (ii) the determinants jo2W/oepqoelmj, jo2W/ojrpqojjlmj and jo2W/oepqojjlmj be different than zero

in the neighborhood of the �point� ðe�pq; j
�
rpqÞ.

In the case now of a linear constitutive behavior, the strain-energy density takes the following general qua-
dratic form:
W ¼ ð1=2Þcpqlmepqelm þ ð1=2Þdrpqjlmjrpqjjlm þ frpqlmjrpqelm; ð4Þ
where cpqlm, drpqjlm and frpqlm are tensors of the material constants. The number of independent components of
the tensors cpqlm and drpqjlm (which are of even rank) can be reduced to yield isotropic behavior, whereas the
tensor frpqlm (being of odd rank) inevitably results in some type of anisotropic behavior (i.e. in preferred direc-
tions in the material response). In other words, when isotropic material behavior is to be considered, it should
definitely be set frpqlm = 0. In the general case, (cpqlm,drpqjlm, frpqlm) can be considered as continuously differen-
tiable functions of position (case of non-homogeneous behavior). On the other hand, the positive definiteness
of W sets the usual restrictions on the range of values of the material constants. Inequalities of this type are
given, e.g., in Georgiadis et al. (2004) for the isotropic strain-gradient case. In addition, due to symmetries of
the stresses and the kinematical variables and, also, due to the conditions stated immediately below Eq. (3), the
following symmetries prevail too:
cpqlm ¼ clmpq ¼ cqplm ¼ cpqml; drpqjlm ¼ djlmrpq ¼ dprqjlm ¼ drpqljm; f rpqlm ¼ frpqml ¼ fprqlm. ð5a; b; cÞ
According to the definitions in (3), Eq. (4) provides the following general linear constitutive relations:
spq ¼ cpqlmelm þ fpqjlmjjlm; mrpq ¼ frpqlmelm þ drpqjlmjjlm. ð6a; bÞ

Finally, as an example of linear constitutive relations, we record the case of an isotropic material (Mindlin,
1964)
spq ¼ kdpqejj þ 2lepq; ð7aÞ

mrpq ¼
1

2
d1ðjjjrdpq þ 2jqjjdrp þ jjjpdqrÞ þ d2ðjrjjdpq þ jpjjdrqÞ þ 2d3jjjqdrp þ 2d4jrpq þ d5ðjqpr þ jqrpÞ; ð7bÞ
where k and l are the standard Lamé constants, and da (a = 1, . . . , 5) are the additional material constants.
Next, the equations of equilibrium (global equilibrium) and the traction boundary conditions along a

smooth boundary (local equilibrium) can be obtained from variational considerations (Mindlin, 1964). In par-
ticular, the issue of traction boundary conditions and their nature was elucidated by Bleustein (1967) in an
important but not so widely known paper. These equations read (the first is the equation of equilibrium
and the other two are the traction boundary conditions)
opðspq � ormrpqÞ þ fq ¼ 0 in V ; ð8Þ
npðspq � ormrpqÞ � DpðnrmrpqÞ þ ðDjnjÞnrnpmrpq ¼ P q on bdy; ð9Þ
nrnpmrpq ¼ Rq on bdy; ð10Þ
where V is the region (open set) occupied by the body, bdy denotes any boundary along a section inside the
body or along the surface of it, fq is the monopolar body force per unit volume, Dp( ) � op( ) � npD( ) is
the surface gradient operator, D( ) � nror( ) is the normal gradient operator, np is the outward unit normal
to the boundary, P q � tðnÞq þ ðDrnrÞnpT ðnÞpq � DpT ðnÞpq is the auxiliary force traction, Rq � npT ðnÞpq is the auxiliary
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Fig. 2. Positively oriented true monopolar and dipolar tractions on the surface of a half-space.
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double force traction, tðnÞq is the true force surface traction, and T ðnÞpq is the true double force surface traction.
Examples of the latter tractions along the surface of a 2D half-space are given in Fig. 2. Also, concrete bound-
ary value problems can be found in, e.g., Georgiadis (2003), Georgiadis et al. (2004), and Grentzelou and
Georgiadis (2005). Finally, let Sr be the portion of the surface S of the body on which external tractions
are prescribed.

The other type of boundary conditions (i.e. the kinematical boundary conditions) is stated now and, in fact,
these boundary conditions (along with the traction boundary conditions) will be verified here in the context of
the Principle of Complementary Virtual Work and the principle that is analogous to the one of Hellinger–
Reissner in classical theory. These boundary conditions are
uq : given on Su; ð11Þ
DðuqÞ : given on Su; ð12Þ
where Su is the portion of the surface S of the body on which both displacements and their normal derivatives
are prescribed. Of course, Sr [ Su = S and Sr \ Su = B hold true.

Finally, we have two notices regarding: (i) dipolar body forces, and (ii) the case of possible edges formed by
the intersection of two portions of the closed boundary surface S. First, a dipolar body force field is omitted in
(8) and (9) since this case is a rather unrealistic possibility. This absence of double body forces can also be
quoted in Mindlin�s (1964) form I and, also, in Mindlin and Eshel (1968). Second, if an edge E is formed
by the intersection of two portions, say, S1 and S2 of S, then k~npnrmrpqk ¼ k~npT ðnÞpq k on E, where
~nq ¼ erpqsrnp with erpq being the Levi–Civita alternating symbol and sr being the unit tangent vector to the
curve E, and the brackets kk denote that the enclosed quantity is the difference between the values on S1

and S2 (Mindlin, 1964; Bleustein, 1967). In what follows, we omit generally this case with the understanding
that, when such a situation arises, appropriate terms stemming from it can be added to our results. As an
example, this will be indicated for the Principle of Virtual Work below.

3. Preliminaries—principle of virtual work

In this section, we will arrive at the Principle of Virtual Work starting from Eqs. (8)–(10). This is an alter-
native to the way advanced by Mindlin (1964) to verify that the Principle of Virtual Work is a necessary and
sufficient condition to satisfy equilibrium. We finally end up with an integral equation (weak form) that could
be solved for the unknowns (spq,mrpq) in any particular problem.

Let a body that occupies the region V enclosed by a (piecewise smooth) surface S be in equilibrium. The
body is under the action of prescribed body forces fq, prescribed single and double surface forces ðP �q;R�qÞ
on the portion Sr of the boundary, and prescribed displacements and their normal derivatives ðu�q;Du�qÞ on
the portion Su of the boundary. Then, provided that Eqs. (8)–(10) hold, we construct an integral expression

identically equal to zero for a virtual field (duq,D(duq)), which is kinematically admissible (i.e. sufficiently dif-
ferentiable, compatible with the assumption of infinitesimal strains, and such that duq = 0 and D(duq) = 0 on
Su) but otherwise arbitrary (see Fig. 3)
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Z
V

op spq � ormrpq

� �
þ fq

� �
duq dV �

Z
Sr

np spq � ormrpq

� �
� Dp nrmrpq

� �
þ Dlnlð Þnrnpmrpq � P �q

h i
duq dS

�
Z

Sr

ðnrnpmrpq � R�qÞDðduqÞdS ¼ 0; ð13Þ
where the operator d( ) denotes weak variations (see, e.g., Gelfand and Fomin, 1963; Dym and Shames, 1973).
Obviously, in the general 3D case, integrals over V are volume integrals, whereas integrals over S (or its por-
tions) are surface integrals.

Now, employing the Green–Gauss theorem along with standard tensor properties and the definitions of
kinematical quantities, the first integral in the LHS of (13) becomes
Z
V

op spq � ormrpq

� �
þ fq

� �
duq dV

¼
Z

V
op spq � ormrpq

� �
duq

� �
dV �

Z
V

spq � ormrpq

� �
dðopuqÞdV þ

Z
V

fqduq dV

¼
Z

S
np spq � ormrpq

� �
duq dS þ

Z
S

nrmrpqopðduqÞdS �
Z

V
spqdepq dV �

Z
V

mrpqdjrpq dV þ
Z

V
fqduq dV .

ð14Þ
Further, by defining the internal virtual work as
dU �
Z

V
spqdepq þ mrpqdjrpq

� �
dV ; ð15Þ
Eq. (14) takes the form
Z
V

op spq � ormrpq

� �
þ fq

� �
duq dV ¼

Z
S

np spq � ormrpq

� �
duq dS þ

Z
S

nrmrpqop duq

� �
dS þ

Z
V

fqduq dV � dU .

ð16Þ
Next, in view of (16) and the fact that duq = 0 and D(duq) = 0 on Su, the identity in (13) is written as
Z
Su

np spq � ormrpq

� �
duq dS þ

Z
Sr

Dp nrmrpq

� �
� Dlnlð Þnrnpmrpq

� �
duq dS þ

Z
S

nrmrpqopðduqÞdS

þ
Z

Sr

P qduq þ RqDðduqÞ
� �

dS þ
Z

V
fqduq dV � dU �

Z
Sr

nrnpmrpqDðduqÞdS ¼ 0. ð17Þ
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In addition, by taking into account the definition of the work of external forces
W ext �
Z

V
fquq dV þ

Z
Sr

½P quq þ RqDðuqÞ�dS; ð18Þ
and its first variation (the external forces are kept constant during the virtual deformation—i.e. a loading of
non-follower type is assumed)
dW ext ¼
Z

V
fqduq dV þ

Z
S

P qduq þ RqDðduqÞ
� �

dS ð19Þ
Eq. (17) takes the form
dW ext � dU þ
Z

S
nrmrpqopðduqÞdS �

Z
S

nrnpmrpqD duq

� �
dS

þ
Z

S
Dp nrmrpqduq

� �
� Dlnlð Þnrnpmrpqduq � nrmrpqDp duq

� �� �
dS. ð20Þ
At this step, use will be made of the following relation:
nkekrqorðelqpnpnjT abc...Þ ¼ DlðnjT abc...Þ � nlnjT abc...ðDknkÞ; ð21Þ
which can be proved to hold true for a Cartesian tensor Tabc. . . of any rank. The proof is straightforward and,
thus, is omitted. Considering now the case Trp � mrpqduq in (21), we have
nsesjkojðepklnlnrmrpqduqÞ ¼ DpðnpmrpqduqÞ � ðDlnlÞnrnpmrpqduq; ð22Þ
which when integrated over the boundary S provides
Z
S

DpðnrmrpqduqÞdS ¼
Z

S
Dlnlð Þnrnpmrpqduq dS; ð23Þ
since applying the Green–Gauss theorem to the surface integral resulting from the term in the LHS of (22)
gives zero.

Then, in view of (23), we write (20) under the form
dW ext � dU þ
Z

S
nrmrpqop duq

� �
dS �

Z
S

nrmrpqDp duq

� �
dS �

Z
S

nrnpmrpqD duq

� �
dS ¼ 0; ð24Þ
and finally, by recalling that op( ) = Dp( ) + npD( ), we succeed in proving
dW ext ¼ dU ; ð25aÞ

or, more explicitly,
Z

V
fqduq dV þ

Z
S

P qduq þ RqD duq

� �� �
dS ¼

Z
V

spqdepq þ mrpqdjrpq

� �
dV . ð25bÞ
Eq. (25b) is the mathematical expression of the Principle of Virtual Work.
We conclude this section with the following remarks: (i) Eq. (25b) is independent of any constitutive law

since in the previous procedure the virtual field (duq,D(duq)) was not related to the stress field (spq,mrpq). If,
however, a non-linear elasticity law is assumed, then the internal virtual work dU is identified with the first

variation of the strain energy stored in the body �VW(epq, jrpq)dV, where W ðepq; jrpqÞ � ð
R epq

0
spqdepqþR jrpq

0 mrpqdjrpqÞ in view of (3). (ii) Eq. (25b) applies only for infinitesimal deformation. (iii) Eq. (25b) is a nec-

essary condition for the global and local equilibrium of the body. It is also a sufficient condition, for if (25b)
holds, then retracting the argument in the reversed direction and considering that the field (duq,D(duq)) is arbi-
trary, one arrives at Eqs. (8)–(10). (iv) In the case of an edge E formed by the intersection of two smooth por-
tions of the boundary S, the term

R
Ek~npT ðnÞpq kduq ds (relative symbols have been defined at the end of Section 2)

should be added to the terms in the LHS of (25b).
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4. Theorem of minimum potential energy

With the help of the Principle of Virtual Work, we will prove here the Theorem of Minimum Potential
Energy for solids governed by non-linear gradient elasticity. First, it is shown that the so-called potential
energy (a functional which will be defined below) exhibits an extremum for the actual deformation of the
body. This deformation (true solution for the displacement field in a particular problem) satisfies the equilib-
rium equations and the elastic constitutive law, in addition to the conditions satisfied by all kinematically
admissible fields. In this way, the stationary value of the potential energy singles out the true solution from
the infinity of kinematically-admissible candidate solutions. Finally, it will be proved that the aforementioned
extremum is actually a minimum. As in the case of classical elasticity, the present theorem may serve for
approximate procedures of the Rayleigh–Ritz type.

The (total) potential energy of the system is defined as
P �
Z

V
W epq; jrpq

� �
dV �

Z
V

fquq dV �
Z

Sr

P quq þ RqD uq

� �� �
dS ð26Þ
for the true solution of the problem and for a non-follower type of loading. Then, it follows immediately from
(19), (25) and (26) that
dP ¼ 0. ð27Þ
Consider now an additional field to the true displacement field of the problem. This additional field can be
identified with a kinematically admissible virtual field (duq,D(duq)). The corresponding potential energy for
this new (kinematically admissible) configuration of the body assumes the form
Pðfuq þ duqg; fDðuqÞ þ DðduqÞgÞ ¼
Z

V
W ðfepq þ depqg; fjrpq þ djrpqgÞ � fqðuq þ duqÞ
� �

dV

�
Z

Sr

½P qðuq þ duqÞ þ RqDðuq þ duqÞ�dS. ð28Þ
Further, the difference of the potential energies between the two configurations is defined as
DP � Pðfuq þ duqg; fDðuqÞ þ DðduqÞgÞ �Pðuq;DðuqÞÞ

¼
Z

V
½W ðfepq þ depqg; fjrpq þ djrpqgÞ � W ðepq; jrpqÞ�dV

�
Z

V
fqduq dV �

Z
Sr

½P qduq þ RqDðduqÞ�dS; ð29Þ
so, our aim now will be to show that DP > 0.
To this end, on expanding the following term as a Taylor series
W ðfepqþdepqg;fjrpqþdjrpqgÞ

¼W ðepq;jrpqÞþ
oW
oepq

depqþ
oW
ojrpq

djrpqþ
1

2!

o2W
oepqoekl

depqdeklþ2
o2W

oepqojjkl
depqdjjklþ

o2W
ojrpqojjkl

djrpqdjjkl

� �
þ��� ;

ð30Þ
we get
W ðfepq þ depqg; fjrpq þ djrpqgÞ � W ðepq; jspqÞ ¼ spqdepq þ mrpqdjrpq þ
1

2!
d2W þ � � �

¼ dW þ 1

2!
d2W þ � � � ; ð31Þ
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where
d2W ¼ o2W
oepqoekl

depqdekl þ 2
o2W

oepqojjkl
depqdjjkl þ

o2W
ojrpqojjkl

djrpqdjjkl ð32Þ
is the second variation of the strain-energy density, whereas higher-order variations are defined analogously.
On using now (31) and the result dP = 0 proved before, Eq. (29) yields
DP ¼ 1

2!

Z
V

d2W dV þ � � � . ð33Þ
Finally, using the positive-definiteness property of the function W(epq,jrpq) in (33), we conclude that DP > 0
and, indeed, that the potential energy assumes a minimum value for the true deformed configuration of the
body.
5. Principle of complementary virtual work

Here, we will develop a conjugate or complementary principle to that developed in Section 3. Instead of
considering real forces and fictitious displacements and displacement normal derivatives, we will investigate
the work done by a system of virtual forces during the actual deformation. The resulting Principle of Comple-
mentary Virtual Work is a necessary and sufficient condition to satisfy a consistent deformed configuration.
Thus, this principle has a kinematical character.

Let the following relations for a compatible kinematical field be satisfied in a body that occupies the region
V enclosed by a (piecewise smooth) surface S
epq ¼ ð1=2Þðopuq þ oqupÞ; ð34Þ
jrpq ¼ oropuq. ð35Þ
In addition, the following kinematical boundary conditions are assumed to prevail along the portion Su of the
surface
uq ¼ u�q; ð36Þ

DðuqÞ ¼ Dðu�qÞ; ð37Þ
where ðu�q;Dðu�qÞÞ are known.
The above kinematical field corresponds to a certain field of stresses and external forces. Further, we allow

as admissible variations of the latter field only those satisfying the equilibrium equations and the traction
boundary conditions, i.e. Eqs. (8)–(10). Then, the virtual fields (dspq,dmrpq) and (dfq,dPq,dRq) will satisfy
the following equations:
opðdspq � orðdmrpqÞÞ þ dfq ¼ 0 in V ; ð38Þ
npðdspq � orðdmrpqÞÞ � DpðnrdmrpqÞ þ ðDjnjÞnrnpdmrpq � dP q ¼ 0 on Sr; ð39Þ
nrnpdmrpq � dRq ¼ 0 on Sr. ð40Þ
Now, provided that Eqs. (34)–(37) hold, we construct an integral expression identically equal to zero for the
virtual fields
Z

V
½epq � ð1=2Þðopuq þ oqupÞ�dspq dV þ

Z
V
ðjrpq � oropuqÞdmrpq dV þ

Z
Su

ðuq � u�qÞdP q dS

þ
Z

Su

½DðuqÞ � Dðu�qÞ�dRq dS ¼ 0. ð41Þ
Next, by defining the internal complementary virtual work
dUC �
Z

V
ðepqdspq þ jrpqdmrpqÞdV ; ð42Þ
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and using the Green–Gauss theorem and taking into consideration the symmetries of the tensors epq and jrpq,
the identity in (41) becomes
dU C �
Z

S
npuq½dspq � orðdmrpqÞ�dS þ

Z
V

uqop½dspq � orðdmrpqÞ�dV �
Z

S
nrðopuqÞdmrpq dS

þ
Z

Su

ðuq � u�qÞdP q dS þ
Z

Su

½DðuqÞ � Dðu�qÞ�dRq dS ¼ 0. ð43Þ
Also, in light of (38)–(40), Eq. (43) takes the form
dU C �
Z

Sr

uqdP q dS �
Z

S
½DpðnrdmrpqÞ � ðDjnjÞnrnpdmrpq�uq dS �

Z
S

nrðopuqÞdmrpq dS � dW ext
c

þ
Z

Su

DðuqÞdRq dS ¼ 0; ð44Þ
where
dW ext
C �

Z
V

uqdfq dV þ
Z

Su

u�qdP q þ Dðu�qÞdRq

h i
dS ð45Þ
is the complementary virtual work done by the virtual forces during the actual deformation of the body.
Finally, working on (44), we first note that the first integral vanishes because of (39) and then we invoke

(23) and the definition of the surface gradient. In this way, we succeed in proving
dW ext
C ¼ dU C; ð46aÞ
or, more explicitly,
Z
V

uqdfq dV þ
Z

S
uqdP q þ DðuqÞdRq

� �
dS ¼

Z
V
ðepqdspq þ jrpqdmrpqÞdV . ð46bÞ
Eq. (46b) is the mathematical expression of the Principle of the Complementary Virtual Work.
The following remarks are now in order: (i) Eq. (46b) is independent of any constitutive law since the virtual

field (dspq,dmrpq) was not related to the kinematical field (epq,jrpq). If, however, a non-linear elasticity law is
assumed, then the internal complementary virtual work dUC is identified with the first variation of the com-
plementary strain energy �VWC(spq,mrpq)dV, where W Cðspq;mrpqÞ � spqepq þ mrpqjrpq � W ðepq; jrpqÞ �
ð
R spq

0 epq dspq þ
R mrpq

0 jrpq dmrpqÞ is the complementary strain-energy density. (ii) Eq. (46b) applies only for
infinitesimal deformation. (iii) Eq. (46b) is a necessary condition for the satisfaction of all basic kinematical
relations of the dipolar theory (cf. Eqs. (34) and (35)) and the kinematical boundary conditions (cf. Eqs.
(36) and (37)). It is also a sufficient condition for simply-connected domains.

6. Theorem of minimum complementary potential energy

With the help of the Principle of Complementary Virtual Work, we will prove here the Theorem of
Minimum Complementary Potential Energy for solids governed by non-linear gradient elasticity. First, it is
shown that the so-called complementary potential energy (a functional which will be defined below) exhibits
an extremum for the solution characterizing the true stress state of the body. This state (true solution for the
stress field in a particular problem) satisfies all kinematical relations and boundary conditions and the elastic
constitutive law, in addition to the global and local equilibrium equations satisfied by all admissible stress
fields. In this way, the stationary value of the complementary potential energy singles out the true solution
from the infinity of equilibrium candidate solutions. Finally, it will be proved that the aforementioned extre-
mum is actually a minimum.

For the true solution of the problem and for a conservative system of loading, the (total) complementary
potential energy of the system is defined as
PC �
Z

V
W Cðspq;mrpqÞdV �

Z
V

uqfq dV �
Z

Su

uqP q þ DðuqÞRq

� �
dS; ð47Þ
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where
W Cðspq;mrpqÞ � spqepq þ mrpqjrpq � W ðepq; jrpqÞ; ð48Þ
while it can be checked that (oWC/ospq) = epq and (oWC/omrpq) = jrpq. Also, in the special case of linear con-
stitutive behavior (cf. Eq. (4)), it can be easily shown that WC = W.

Then, it readily follows from (45)–(47) that
dPC ¼ 0. ð49Þ
Consider now an additional field to the true stress field of the problem. This additional field can be iden-
tified with the virtual field (dspq,dmrpq) of Section 5. The latter field satisfies the equilibrium equations and the
traction boundary conditions, i.e. Eqs. (8)–(10). The corresponding complementary potential energy for this
new (statically admissible) state of the body assumes the form
PCðfspq þ dspqg; fmrpq þ dmrpqgÞ ¼
Z

V
W Cðfspq þ dspqg; fmrpq þ dmrpqgÞ � uqðfq þ dfqÞ
� �

dV

�
Z

Su

uqðP q þ dP qÞ þ DðuqÞðRq þ dRqÞ
� �

dS. ð50Þ
In addition, the difference of the complementary potential energies between the two states is defined as
DPC � PCðfspq þ dspqg; fmspq þ dmspqgÞ �PCðspq;mspqÞ

¼
Z

V
W Cðfspq þ dspqg; fmrpq þ dmrpqgÞ � W Cðspq;mrpqÞ
� �

dV �
Z

V
uqdfq dV

�
Z

Su

uqdP q þ DðuqÞdRq

� �
dS; ð51Þ
and, therefore, we would like now to show that DPC > 0.
To this end, we expand the term WC({spq + dspq},{mrpq + dmrpq}) as a Taylor series and get
W Cðfspq þ dspqg; fmrpq þ dmrpqgÞ � W Cðspq;mrpqÞ ¼ epqdspq þ jrpqdmrpq þ
1

2!
d2W C þ � � �

¼ dW C þ
1

2!
d2W C þ � � � ; ð52Þ
where
d2W C ¼
o2W C

ospqoskl
dspqdskl þ 2

o2W C

ospqomjkl
dspqdmjkl þ

o2W C

omrpqomjkl
dmrpqdmjkl ð53Þ
is the second variation of the complementary strain-energy density, and higher-order variations are defined in
the same way.

On using now (52) and the result dPC = 0 proved before, Eq. (51) yields
DPC ¼
1

2!

Z
V

d2W C dV þ � � � . ð54Þ
Finally, using the positive-definiteness property of the function WC(spq,mrpq) in (54), we conclude that
DPC > 0 and, indeed, that the complementary potential energy assumes a minimum value for the true stress
state of the body.

7. A variational principle of the Hellinger–Reissner type

As is well known within the classical theory, instead of a variational principle based on variations of, solely,
the displacement or the stress field, one may construct a more general variational principle based on the var-
iation of both fields (see, e.g., Fung, 1965; Dym and Shames, 1973). This is the Hellinger–Reissner Principle,
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which when applied in finite-element procedures gives generally more accurate results than the standard
Principles of Virtual Work and Complementary Virtual Work and their associated minimum theorems.

Here, therefore, prompted by the standard Hellinger–Reissner Principle, we consider a functional the extre-
mization of which provides all basic equations of the non-linear dipolar gradient elasticity. By observing that
there are four independent kinematical variables in the problem, i.e. (uq,D(uq), epq,jrpq), we introduce the four
Lagrange multipliers (lq,qq,kpq,mrpq) for the variation of the functional. Then, the following potential-energy
expression (functional) of the Hellinger–Reissner type is constructed:
PR ¼
Z

V
W ðepq; jrpqÞ � fquq � kpq epq � ð1=2Þðopuq þ oqupÞ

� �� �
dV �

Z
V

mrpqðjrpq � oropuqÞdV

�
Z

Sr

P �quq þ R�qDðuqÞ
h i

dS �
Z

Su

lqðuq � u�qÞdS �
Z

Su

qq DðuqÞ � Dðu�qÞ
h i

dS; ð55Þ
where ðu�q;Dðu�qÞÞ and ðP �q;R�qÞ are known values of the corresponding fields on Su and Sr, respectively.
To compute the variation of PR, the quantities (uq,D(uq), epq,jrpq) and (lq,qq,kpq,mrpq) are all treated as

independent. The variation of the above functional is
dPR ¼
Z

V

oW
oepq

depq þ
oW
ojrpq

djrpq � fqduq � kpqdepq � epqdkpq þ kðpqÞopðduqÞ
� 	

dV

þ
Z

V
ðopuqÞdkðpqÞ � mrpqdjrpq � jrpqdmrpq þ mðrpÞqorðopðduqÞÞ þ orðopuqÞdmðrpÞq
� �

dV

�
Z

Su

P �qduq þ R�qDðduqÞ
h i

dS �
Z

Su

ðuq � u�qÞdlq dS �
Z

Su

lqduq dS

�
Z

Su

DðuqÞ � Dðu�qÞ
h i

dqq dS �
Z

Su

qqDðduqÞdS; ð56Þ
where ( ) as a subscript denotes the symmetric part of a tensor. In (56), however, certain terms appear that
exhibit non-explicit dependence upon the variations. These are the last term of the first integral and the fourth
term of the second integral in the latter expression. Working on these terms, we use the Green–Gauss theorem,
the definition of the surface gradient operator, and Eq. (21). After some algebra and employing also the sym-
metry of the strain tensor, we finally obtain
dPR ¼
Z

V

oW
oepq
� kpq

� �
depq þ

oW
ojspq

� mspq

� �
djspq � fq þ opkðpqÞ � opðormðrpÞqÞ

� �
duq

� 	
dV

�
Z

V
epq � ð1=2Þðopuq þ oqupÞ
� �

dkpq þ ðjrpq � oropuqÞdmrpq

� �
dV �

Z
Su

ðuq � u�qÞdlq dS

�
Z

Su

DðuqÞ � Dðu�qÞ
h i

dqq dS �
Z

Sr

R�q � nrnpmðrpÞq

h i
DðduqÞdS

�
Z

Sr

P �q � npkðpqÞ þ DpðnrmðrpÞqÞ � ðDlnlÞnrnpmðrpÞq þ npormðrpÞq

h i
duq dS

�
Z

Su

lq � npkðpqÞ þ DpðnrmðrpÞqÞ � ðDlnlÞnrnpmðrpÞq þ npormðrpÞq
� �

duq dS

�
Z

Su

qq � nrnpmðrpÞq
� �

DðduqÞdS. ð57Þ
Now, setting dPR = 0 one obtains all the basic equations of the non-linear dipolar gradient elasticity (i.e.
the definition of stresses, the equations of equilibrium, the definition of strain in terms of displacement gradi-
ents, the compatibility relations, and the kinematical and traction boundary conditions) while the Lagrange
multipliers are found to correspond to the stresses and the auxiliary tractions, viz.
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mrpq � mrpq; ð58aÞ
kpq � spq; ð58bÞ
lq � P q ¼ npðkðpqÞ � ormðrpÞqÞ � DpðnrmðrpÞqÞ þ ðDlnlÞnrnpmðrpÞq; ð58cÞ
qq � Rq ¼ nrnpmðrpÞq. ð58dÞ
Therefore, in view of the above results, we rewrite (55) under the following form obtaining the analogue of
the Hellinger–Reissner potential energy within the present theory:
PR ¼
Z

V
W ðepq; jrpqÞ � fquq � spq epq � ð1=2Þðopuq þ oqupÞ

� �� �
dV �

Z
V

mrpqðjrpq � oropuqÞdV

�
Z

Sr

P �quq þ R�qDðuqÞ
h i

dS �
Z

Su

P qðuq � u�qÞdS �
Z

Su

Rq DðuqÞ � Dðu�qÞ
h i

dS. ð59Þ
8. Theorems of Castigliano and Engesser type

As in the case of classical theory, two useful theorems for structural analysis can be derived within the pres-
ent theory by invoking the Principles of Virtual Work and Complementary Virtual Work. For a structure in
equilibrium under a set of discrete conservative tractions (auxiliary) P ðaÞq ða ¼ 1; 2; . . . ; nÞ and RðbÞq ðb ¼
1; 2; . . . ;mÞ, where 1,2, . . . are the points of application of the loads, the Principle of Virtual Work in (25a)
states that
dU ¼
Xn

a¼1

P ðaÞq duðaÞq þ
Xm

b¼1

RðbÞq DðduðbÞq Þ; ð60Þ
where uq is the displacement at the point of application of the individual force and in the same direction. The
points of application of P ðaÞq may not coincide with the points of application of RðbÞq .

Further, compatible with the theory employed here is to assume that the strain energy U is a function of the
displacement and its normal derivative. Accordingly, the first variation of U will be written as
dU ¼
Xn

a¼1

oU

ouðaÞq

duðaÞq þ
Xm

b¼1

oU

oDðuðbÞq Þ
DðduðbÞq Þ. ð61Þ
Comparing now (60) and (61), we deduce a theorem of the Castigliano type, viz.
oU

ouðaÞq

¼ P ðaÞq ;
oU

oDðuðbÞq Þ
¼ RðbÞq . ð62a; bÞ
Another theorem (a theorem of the Engesser type) can be obtained from the Principle of Complementary
Virtual Work working along similar lines. Indeed, (46a) provides
dUC ¼
Xn

a¼1

uðaÞq dP ðaÞq þ
Xm

b¼1

DðuðbÞq ÞdRðbÞq ; ð63Þ
whereas the first variation of the complementary strain energy UC is written as
dUC ¼
Xn

a¼1

oU C

oP ðaÞq

dP ðaÞq þ
Xm

b¼1

oUC

oRðbÞq

dRðbÞq ; ð64Þ
assuming—as is natural—that UC is a function of the single force and double force tractions. Finally, from
(63) and (64), we end up with the following result
oU C

oP ðaÞq

¼ uðaÞq ;
oUC

oRðbÞq

¼ DðuðbÞq Þ. ð65a; bÞ
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9. Uniqueness theorem of the Kirchhoff–Neumann type

We prove here a theorem of uniqueness within the linear version of the dipolar gradient elasticity theory
and under the provision of a positive definite strain-energy density. Following the strategy of Neumann�s the-
orem (in classical elasticity), which is more general than the standard Kirchhoff theorem (dealing only with
traction boundary conditions), we consider the case of mixed boundary conditions ((Pq,Rq) given on Sr

and (uq,D(uq)) given on Su). The proof proceeds by reductio ad absurdum. To this end, we assume that two
different solutions do exist for the same problem (i.e. same material, geometry, boundary conditions and body
forces), say K0 ¼ ðu0q;Dðu0qÞ; s0pq;m

0
rpqÞ and K00 ¼ ðu00q;Dðu00qÞ; s00pq;m

00
rpqÞ.

Then, due to the assumed identical boundary conditions, we write
Z
S
ðP 0q � P 00qÞðu0q � u00qÞ þ ðR0q � R00qÞðDðu0qÞ � Dðu00qÞÞ
h i

dS ¼ 0. ð66Þ
In addition, due to the linearity of the governing equations, the difference of the two solutions defined as
K = (uq,D(uq),spq,mrpq), where uq ¼ u0q � u00q;DðuqÞ ¼ Dðu0qÞ � Dðu00qÞ; spq ¼ s0pq � s00pq and mrpq ¼ m0rpq � m00rpq, will
satisfy Eqs. (6) and (8)–(10) with fq ¼ f 0q � f 00q � 0; P q ¼ P 0q � P 00q � 0 and Rq ¼ R0q � R00q � 0. Since now the
LHS of (25b) (the expression of the Principle of Virtual Work) vanishes, due to (66) and the fact that
fq � 0, we are led to the conclusion that the RHS of (25b) vanishes too, which, however, is not true because
the strain energy was assumed to be a positive definite quantity.
10. The reciprocal theorem

Here, we were able to prove a reciprocal theorem that is analogous to the classical Betti–Rayleigh theorem
when the linear constitutive relations have the following form:
spq ¼ cpqlmelm; mrpq ¼ drpqjlmjjlm; ð67a; bÞ

i.e. when the tensor of material constants frpqlm in the general linear relations (6) is absent. As mentioned in
Section 2, this tensor (being of odd rank) inevitably results in preferred directions in the material response.
In the case where frpqlm does not vanish, a reciprocal theorem cannot be established. However, this restriction
is not very serious because Eq. (67) are general enough and still allow for anisotropic material response. This
result of ours (i.e. of having frpqlm vanished in order to establish a reciprocal theorem) was also corroborated
by Giannakopoulos et al. (submitted for publication).

Consider two different sets of forces (fq,Pq,Rq) and ðf 0q; P 0q;R0qÞ acting successively on the body. The first set
(unprimed one) and the second set (primed one) result, respectively, in the following sets of strains and stresses
(spq,mrpq, epq,jrpq) and ðs0pq;m

0
rpq; e

0
pq; j

0
rpqÞ. Then, applying the Principle of Virtual Work yields
Z

V
fqu0q dV þ

Z
Sr

P qu0q þ RqDðu0qÞ
h i

dS ¼
Z

V
ðspqe

0
pq þ mrpqj

0
rpqÞdV ; ð68Þ
if we assume that the forces of the unprimed set act first and the field ðu0q;Dðu0qÞÞ produced by the primed set of
loads is identified with the virtual field. If, however, the succession of application of the loads is reversed, the
Principle of Virtual Work will provide
Z

V
f 0quq dV þ

Z
Sr

P 0quq þ R0qDðuqÞ
h i

dS ¼
Z

V
ðs0pqepq þ m0rpqjrpqÞdV . ð69Þ
Now, from the constitutive equations and the symmetries in (5) we have the relations
spqe
0
pq ¼ cpqlmelme0pq ¼ clmpqe

0
pqelm ¼ s0lmelm ¼ s0pqepq; ð70Þ

mrpqj
0
rpq ¼ drpqjlmjjlmj0rpq ¼ djlmrpqj

0
rpqjjlm ¼ m0jlmjjlm ¼ m0rpqjrpq; ð71Þ
which lead to the (intermediate) result
Z
V
ðspqe

0
pq þ mrpqj

0
rpqÞdV ¼

Z
V
ðs0pqepq þ m0rpqjrpqÞdV . ð72Þ
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Finally, combining (72) with Eqs. (68) and (69) provides the mathematical expression of the reciprocal
theorem
Z

V
fqu0q dV þ

Z
Sr

P qu0q þ RqDðu0qÞ
h i

dS ¼
Z

V
f 0quq dV þ

Z
Sr

P 0quq þ R0qDðuqÞ
h i

dS; ð73Þ
which states that the work done by the first set of loads acting through the kinematical field produced by the
second set of loads is equal to the work done by the forces of the second set of loads acting through the kine-
matical field produced by the first set. Practically speaking, one disposes in this way an integral equation to
solve for any unknown kinematical field. The latter field and the system of loading (prescribed, of course) that
has produced it are interrelated, via (73), with a known solution (perhaps a Green�s function).

A restrictive form of the reciprocal theorem dealing with form II of Mindlin�s theory (pure strain-gradient
case) and with only isotropic material response was given earlier in the M.S. Thesis of the second author
(Grentzelou, 2002) and in the work by Polyzos et al. (2003). Also, Giannakopoulos et al. (submitted for pub-
lication) presented a reciprocal theorem dealing with form II of Mindlin�s theory and valid for anisotropic
material behavior as well.

11. A path-independent integral of the J type

Within the framework of non-linear dipolar gradient elasticity, we will derive first the expression giving the
energy release rate (ERR) resulting from a virtual extension of a straight crack in a two-dimensional (2D)
body. Then, we will prove the path independence of this expression. We should notice that such an expression
(J-integral) was stated before by Chen et al. (1999) and by Georgiadis (2003), but in both cases without pro-
viding any actual proof. Here, we therefore intend for a rigorous derivation of the new form of the J-integral
and a proof of its path independence. In what follows, the absence of body forces is assumed.

Fig. 4 depicts the 2D configuration of the cracked area A under plane-strain conditions. This area is en-
closed by a piecewise smooth curve C (this contour runs in a counterclockwise sense starting from the lower
crack face and ending on the upper crack face). The curve C may either coincide with the boundary of the
cracked body or be an imagined curve surrounding the crack tip. The initial crack has length a. Also, an
Ox1x2 Cartesian coordinate system is attached to the crack tip and translates with it when the crack grows.
As is well-known in the case of classical elasticity with non-linear constitutive relations, the negative of the
rate of change of total potential energy with respect to crack dimension is called the ERR. This quantity is
a function of crack size, in general. From its definition, the ERR is the amount of energy (per unit length along
the crack edge) supplied by the elastic energy in the body and by the loading in creating the new fracture sur-
faces. In this sense, the ERR is a configurational force that is work-conjugate to the amount of crack advance
(see, e.g., Rice, 1968; Eshelby, 1975; Cherepanov, 1979; Eischen and Herrmann, 1987; Maugin, 1993;
Anderson, 1995). Within the classical non-linear elasticity, the ERR was found to be equal to the path-
independent J-integral of Rice.
x1
α

A
Γ

x2

0

Fig. 4. A two-dimensional cracked area A bounded by the curve C.



5706 H.G. Georgiadis, C.G. Grentzelou / International Journal of Solids and Structures 43 (2006) 5690–5712
We work now with the theory of dipolar gradient elasticity involving non-linear constitutive relations.
Assuming quasi-static conditions and the absence of body forces, we write from Eq. (26) the potential energy
per unit thickness of the body as
P ¼
Z

A
W ðepq; jrpqÞdA�

Z
Cr

P quq þ RqDðuqÞ
� �

dC; ð74Þ
where the first integral is an area integral, the second integral is a line integral, dC denotes arc length along the
contour C, and Cr is the portion of the contour on which tractions are assumed to be prescribed. Further, a
virtual extension of the crack along its plane would result in the following change in potential energy
dP
da
¼
Z

A

dW
da

dA�
Z

C
P q

duq

da
þ RqD

duq

da

� �� 	
dC; ð75Þ
where the line integration can be extended over the entire contour C since (duq/da) = 0 and D(duq/da) = 0 over
the portion Cu, where kinematical conditions are specified. Of course, kinematical conditions can be prescribed
along a portion of C only if the curve C is the boundary of the body. If the curve C is simply an imagined curve
surrounding the crack tip, then this curve should be identical to Cr.

When the crack grows, the coordinate system moves with the crack tip. We therefore have
d

da
¼ o

oa
þ ox1

oa
o

ox1

¼ o

oa
� o

ox1

; ð76Þ
since (ox1/oa) = �1. In view of the above result, Eq. (75) becomes
dP
da
¼
Z

A

oW
oa
� oW

ox1

� �
dA�

Z
C

P q
ouq

oa
� ouq

ox1

� �
dC�

Z
C

Rq D
ouq

oa

� �
� D

ouq

ox1

� �� 	
dC. ð77Þ
On the other hand, by invoking the definition of the strain-energy density, i.e. W �W(epq,jrpq), we write
oW
oa
¼ oW

oepq

oepq

oa
þ oW

ojrpq

ojrpq

oa
¼ spq

oepq

oa
þ mrpq

ojrpq

oa
; ð78Þ
whereas, due to the Principle of Virtual Work (cf. (25)), it is valid

Z

A
spq

oepq

oa
dAþ

Z
A

mrpq
ojrpq

oa
dA ¼

Z
C

P q
ouq

oa
dCþ

Z
C

RqD
ouq

oa

� �
dC. ð79Þ
Now, in light of (78) and (79), Eq. (77) becomes
dP
da
¼ �

Z
A

oW
ox1

dAþ
Z

C
P q

ouq

ox1

þ RqD
ouq

ox1

� �� 	
dC; ð80Þ
or, due to the Green–Gauss theorem,
J � � dP
da
¼
Z

C
Wn1 � P q

ouq

ox1

� RqD
ouq

ox1

� �� 	
dC ¼

Z
C
ðW dx2 � P q

ouq

ox1

þ RqD
ouq

ox1

� �� 	
dCÞ; ð81Þ
where the symbol ‘‘�’’ above means equality by definition. The above expression constitutes the new form of
J-integral in the non-linear gradient elasticity.

At this point, however, we should more carefully inspect on the applicability of the Green–Gauss theorem
in the previous procedure. This is because of the possible presence of singularities of the fields involved at the
crack tip. Such singularities would invalidate the application of the Green–Gauss theorem (its applicability was
taken for granted before). More specifically, we inspect on the possibility of the term

R
AðdW =daÞdA becoming

infinite in (75). First, in light of (76), this term is written as
Z
A

dW
da

dA ¼
Z

A

oW
oa

dA�
Z

A

oW
ox1

dA. ð82Þ



x2

x1
0

( , +0)(- , +0)

(- ε

ε ε
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Fig. 5. Rectangular-shaped contour surrounding the crack tip. To evaluate the ERR, e! +0 is taken.
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Now, by choosing a rectangular-shaped contour surrounding the crack tip (see Fig. 5) and by applying the
Green–Gauss theorem (accepting for the moment its applicability), the second term in the RHS of (82) is writ-
ten as
Z
A

oW
ox1

dA ¼
Z

C
Wn1 dC ¼

Z
C

W dx2; ð83Þ
which, certainly, becomes zero if we allow the �height� of the rectangle to vanish. We should mention that this
convenient concept of the rectangular-shaped contour was introduced by Freund (1972) in examining the en-
ergy flux into the tip of a rapidly extending crack. This was also employed by Burridge (1976) and Georgiadis
(2003) in different contexts.

In view of the above, we are left in the vicinity of the crack tip with the term
R

AðoW =oaÞdA. Further, due to
the definition of W and in view of (79), this term is written as
Z
A

oW
oa

dA ¼
Z

A
spq

oepq

oa
þ mrpq

ojrpq

oa

� �
dA ¼

Z
C

P q
ouq

oa
þ RqD

ouq

oa

� �� �
dC. ð84Þ
But, in light of the work by Shi et al. (2000), Georgiadis (2003) and Grentzelou and Georgiadis (2005) on crack
problems of linear gradient elasticity, the field opuq should be bounded in the crack-tip vicinity (the latter work
provides the necessary conditions for solution uniqueness of plane crack problems within the dipolar elasticity
theory).

Then, by considering again the rectangular-shaped contour in Fig. 5 and allowing the �height� of the rect-
angle to vanish, we end up with line integrals over �e 6 x1 � x 6 e (with e! +0). Typically, these integrals

have the forms (Georgiadis, 2003):
R e
�eðxþÞ

�3=2ðx�Þ1=2 dx and
R e
�eðxþÞ

�1=2ðx�Þ�1=2 dx, where xx
þ and xx

� are distri-

butions defined in the following manner (see, e.g., Lauwerier, 1963; Gelfand and Shilov, 1964). The distribu-
tion xx

þ for Re(x) > �1 is identified with the function xx
þ ¼ xx for x > 0 and xx

þ ¼ 0 for x < 0. For other values
of the complex parameter x it is defined by analytic continuation of the functional hxx

þ; hi �
R1

0
xxhðxÞdx,

where h(x) is a test function. In this way, a distribution is obtained for all complex values of x with the excep-
tion of x = �1,�2,�3, . . . In a similar manner, xx

� is defined by starting from xx
� ¼ 0 for x > 0 and xx

� ¼j xj
x

for x < 0. Finally, Fisher�s theorem on the product of distributions (Fisher, 1971; Freund, 1990; Georgiadis,
2003), i.e. the operational relation ðxþÞ�1�xðx�Þx ¼ �pdðxÞ½2 sinðpxÞ��1 with x 5 �1,�2,�3, . . . and d(x)
being now the Dirac delta distribution, provides a means to evaluate the above integrals. Indeed, in view
of the fundamental property of the Dirac delta distribution that

R e
�e dðxÞdx ¼ 1, the integrals are bounded (de-

spite the hyper-singular nature of the near-tip stress). Therefore, it turns out that Eq. (84) will give a finite
result (in the most singular possible case of linear gradient elasticity). For more details on calculations of this
type, we refer to the work by Georgiadis (2003).

We will show now that the integral in (81) is path-independent, so that J is indeed the ERR for any choice
of curve C. The path-independent property is a convenient one since it often permits a direct evaluation of J.
Following the respective procedure of standard elasticity (see, e.g., Rice, 1968; Anderson, 1995), we begin by
evaluating J over a closed curve C0 surrounding a region A0 of the body (see Fig. 6). It is assumed that this
region is simply connected and free of singularities. Then, invoking the traction boundary conditions stated in
Eqs. (9) and (10), the J-integral takes the form



Γ0

A0

Fig. 6. A closed curve C0 surrounding a region A0 in a 2D body.

Fig. 7.
closed
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J ¼
Z

C0

Wn1 � P q
ouq

ox1

� RqD
ouq

ox1

� �� 	
dC

¼
Z

A0

oW
dx1

� op ðspq � ormrpqÞ
ouq

ox1

� 	
� or npmrpqD

ouq

ox1

� �� 	� �
dA

þ
Z

C0

DpðnrmrpqÞ � ðDlnlÞnrnpmrpq

� � ouq

ox1

dC. ð85Þ
Further, working on the first term of the surface integral in (85) and by invoking the definition of the strain-
energy density and the symmetries of the tensors involved, we have
oW
ox1

¼ oW
oepq

oepq

ox1

þ oW
ojrpq

ojrpq

ox1

¼ spq
oepq

ox1

þ mrpq
ojrpq

ox1

¼ ðspq � ormrpqÞop
ouq

ox1

� �
þ or mrpqop

ouq

ox1

� �� 	
. ð86Þ
Also, by using the result in (23) in conjunction with the Green–Gauss theorem, the line integral in (85)
becomes
Z

C0

DpðnrmrpqÞ � ðDlnlÞnrnpmrpq

� � ouq

ox1

dC ¼ �
Z

C0

nrmrpqDp
ouq

ox1

� �
dC ¼ �

Z
A0

op mrpqDp
ouq

ox1

� �� 	
dA. ð87Þ
In view of the above, Eq. (85) takes the form
J ¼ �
Z

A0

opðspq � ormrpqÞ
ouq

ox1

dA; ð88Þ
Γ1

Γ 2Γ3

Γ4

Two arbitrary contours C1 and C2 surrounding the crack tip. These contours when supplied by the line segments C3 and C4 form a
contour.
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which is equal to zero because the integrand vanishes due to the equilibrium equations (with no body forces)
stated in (8). Thus, J = 0 for any closed contour.

The final step to prove path-independence is to consider two arbitrary contours C1 and C2 surrounding the
crack tip, as shown in Fig. 7. It is assumed that the region between C1 and C2 is simply connected and free of
singularities. Then, a closed contour can be constructed by connecting the previous contours by the line seg-
ments C3 and C4 running, respectively, along the upper and lower crack surfaces. The total J along the closed
path (equal to zero, in view of the previous analysis) will be equal to the sum of contributions from each par-
ticular contour, i.e. J = J1 + J2 + J3 + J4 � 0. But, along the upper and lower crack surfaces the tractions are
vanished and also dx2 = 0. Therefore, J3 = J4 = 0 from their definition in (81) and J1 = �J2. Path-indepen-
dence has thus been proved.
12. Pure strain-gradient case

In the pure strain-gradient case, Eq. (2) for the strain-energy density is considered but now with jrpq being
the gradient of only the strain field (and not of the entire displacement-gradient field), i.e. jrpq = orepq. This is
form II in Mindlin�s (1964) paper. Obviously, it is jrpq � jrqp. Stresses are defined as in (3) and, accordingly,
the dipolar stress tensor exhibits the latter type of symmetry, i.e. mrpq � mrqp. This formulation of the dipolar
gradient theory does not take into consideration rotation gradients. All governing equations pertaining to
form I (presented in Section 2) and all energy considerations and results given before are also valid for form
II provided that the proper symmetries for all tensors are followed. Therefore, in this Section we just present a
few intermediate results (valid in the pure strain-gradient case) when deviations occur between the two forms.
No derivations are provided.

When linear and isotropic behaviour is considered, (7b) has to be replaced by
mrpq ¼
1

2
d1ðjqjjdrp þ 2jjjrdpq þ jpjjdqrÞ þ 2d2jrjjdpq þ d3ðjjjqdrp þ jjjpdrqÞ þ 2d4jrpq þ d5ðjpqr þ jqrpÞ.

ð89Þ

The integral expression in (41) for the Principle of Complementary Virtual Work has to be replaced by
Z

V
epq � ð1=2Þðopuq þ oqupÞ
� �

dspq dV þ
Z

V
jrpq � ð1=2Þorðopuq þ oqupÞ
� �

dmrpq dV

þ
Z

Su

ðuq � u�qÞdP q dS þ
Z

Su

DðuqÞ � Dðu�qÞ
h i

dRq dS ¼ 0. ð90Þ
Finally, Eqs. (55)–(57) and (59) for the Principle of the Hellinger–Reissner type have to be replaced, respec-
tively, by
PR ¼
Z

V
W ðepq; jrpqÞ � fquq � kpq epq � ð1=2Þðopuq þ oqupÞ

� �� �
dV

�
Z

V
mrpq jrpq � ð1=2Þorðopuq þ oqupÞ
� �

dV �
Z

Sr

P �quq þ R�qDðuqÞ
h i

dS

�
Z

Su

lqðuq � u�qÞdS �
Z

Su

qq DðuqÞ � Dðu�qÞ
h i

dS; ð91Þ

dPR ¼
Z

V

oW
oepq

depq þ
oW
ojrpq

djrpq � fqduq � kpqdepq � epqdkpq þ kðpqÞopðduqÞ
� 	

dV

þ
Z

V
ðopuqÞdkðpqÞ � mrpqdjrpq � jrpqdmrpq þ mrðpqÞorðopðduqÞÞ þ orðopuqÞdmrðpqÞ
� �

dV

�
Z

Su

P �qduq þ R�qDðduqÞ
h i

dS �
Z

Su

ðuq � u�qÞdlq dS �
Z

Su

lqduq dS

�
Z

Su

DðuqÞ � Dðu�qÞ
h i

dqq dS �
Z

Su

qqDðduqÞdS; ð92Þ
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dPR ¼
Z

V

oW
oepq
� kpq

� �
depq þ

oW
ojspq

� mspq

� �
djspq � fq þ opkðpqÞ � opðormðrpÞqÞ

� �
duq

� 	
dV

�
Z

V
epq � ð1=2Þðopuq þ oqupÞ
� �

dkpq þ jrpq � ð1=2Þorðopuq þ oqupÞ
� �

dmrpq

� �
dV

�
Z

Su

ðuq � u�qÞdlq dS �
Z

Su

DðuqÞ � Dðu�qÞ
h i

dqq dS �
Z

Sr

R�q � nrnpmrðpqÞ

h i
DðduqÞdS

�
Z

Sr

P �q � npkðpqÞ þ DpðnrmrðpqÞÞ � ðDlnlÞnrnpmrðpqÞ þ npormrðpqÞ

h i
duq dS

�
Z

Su

lq � npkðpqÞ þ DpðnrmrðpqÞÞ � ðDlnlÞnrnpmrðpqÞ þ npormrðpqÞ
� �

duq dS

�
Z

Su

qq � nrnpmrðpqÞ
� �

DðduqÞdS; ð93Þ

PR ¼
Z

V
W ðepq; jrpqÞ � fquq � spq epq � ð1=2Þðopuq þ oqupÞ

� �� �
dV

�
Z

V
mrpq jrpq � ð1=2Þorðopuq þ oqupÞ

� �
dV �

Z
Sr

P �quq þ R�qDðuqÞ
h i

dS

�
Z

Su

P qðuq � u�qÞdS �
Z

Su

Rq DðuqÞ � Dðu�qÞ
h i

dS. ð94Þ
Of course, in all equations of this Section jrpq = orepq is implied.

13. Concluding remarks

In this work, we derived general energy principles and theorems within the framework of Mindlin�s dipolar
gradient elasticity. These are the principles of virtual work and complementary virtual work, the theorem of
minimum potential energy, the theorem of minimum complementary potential energy, a variational principle
analogous to that of the Hellinger–Reissner principle in classical theory, two theorems analogous to those of
Castigliano and Engesser in classical theory, a uniqueness theorem of the Kirchhoff–Neumann type, and a re-
ciprocal theorem. These results can be of importance to computational methods for analyzing practical prob-
lems. We were also concerned, in the same framework, with a fundamental energetic quantity of fracture
mechanics, namely the J-integral. This was rigorously derived for two-dimensional cracked bodies. The
new form of the J-integral was identified with the energy release rate at the tip of a growing crack and its
path-independence was proved.
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